

DOE 3013 Container Program

Jeffrey Bentley Nuclear Materials Stabilization Senior Technical Advisor

Citizens Advisory Board September 17, 2024

SAVANNAH RIVER SITE • AIKEN • SC • WWW.SRS.GOV

- Following the end of the "Cold War" in 1989, need for plutonium product and scrap was sharply curtailed thus creating a surplus of material
- 1994 Department decided to stabilize, package and store excess plutonium until final disposition
- 1994 Department issued Standard DOE-STD-3013, "Stabilization, Packaging, and Storage of Plutonium-Bearing Materials"
- Plutonium stabilization and packaging began in late 2001
 - Hanford Site
 - Lawrence Livermore National Laboratory (LLNL)
 - Los Alamos National Laboratory (LANL)
 - Rocky Flats Environmental Technology Site (RFETS)
 - Savannah River Site (SRS)

Example of 3013 Container Configuration

Welded Outer Container – design the same for all sites

Welded Inner Container – design differs between packaging sites

Vented Convenience Container – design differs between sites

Additional 3013 Container Details

- The original standard, issued in 1994, was based on decades of experience with short-term storage of plutonium and sought to avoid conditions that had led to previous container concerns
 - Designed to be sufficient for 50-year storage
 - Sets limits on contents
 - Outer container design working pressure of 699 psig (about twenty times your average vehicle tire pressure)
 - Leak-tight after dropping from the distance of 30 ft. (rooftop of a two-story house)
- Revised in 1996, 1999, 2000, 2004, 2012 and 2018 to incorporate lessons learned
- The 2024 revision is currently in the review process
- Over 5000 containers were packaged between 2001 and 2005
- Formal surveillance (monitoring) program began 2003
 - Field work for current surveillance program completed in 2024
 - Laboratory evaluations of containers and oxide materials continue
 - Next Phase of field surveillance program is under development

- One integrated program covers all Pu storage sites, not just SRS
 - Initial ISP identified no credible failure mechanisms for stored metal and two potential mechanisms for oxide pressurization and corrosion
 - Evaluates performance of containers vs. 50-year service life
 - Two parts of surveillance program are Shelf-life Testing and Field Surveillance
- Shelf-Life Program
 - Accelerated performance testing using both representative samples from the packaging sites as well as worstcase materials
 - Both small scale and full-scale units
- Field Surveillance
 - Both Non-Destructive and Destructive Examination of containers in storage inventory
 - Containers selected by both random sampling and engineering judgment
 - 162 Destructive Examinations and 152 Non-Destructive Examinations performed to date

ISP Findings and Conclusions

• Pressurization

- Maximum gas pressure is significantly lower than estimated
- Any oxygen present in the gas phase decreases, so no flammable gas composition

Corrosion

- Corrosion rates decrease over time
- Potential failure of inner containers due to stress corrosion cracking has not been eliminated
 - A small number of containers have significant amounts of chloride salts present with elevated moisture
 - In those containers, some cracking has been observed (none through-wall)
- No outer container concerns have been observed
- Surveillance program has not identified any stored materials that would challenge the 50-year storage life
- Next phase of surveillance program will continue with focus on destructive examination of chloride salt bearing stored materials
- Findings are used as feedback in the 3013 Standard revision process
- The 3013 Standard has provided a safe and secure program for the storage of surplus plutonium awaiting disposition.